Free Carrier Generation and Recombination in PbS Quantum Dot solar cells
نویسندگان
چکیده
Time Delayed Collection Field (TDCF) and Bias Assisted Charge Extraction (BACE) experiments are used to investigate the charge carrier dynamics in PbS colloidal quantum dot solar cells. We find that free charge carrier creation is slightly field dependent, thus providing an upper limit to the fill factor. BACE measurements reveal a rather high effective mobility of 2 × 10 cm2/Vs, meaning that charge extraction is efficient. On the other hand, a rather high steady state non-geminate recombination coefficient of 3 × 10 cm3/s is measured. We, therefore, propose rapid free charge recombination to constitute the main origin for the limited efficiency of PbS colloidal quantum dots cells.
منابع مشابه
Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملReduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells
Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the...
متن کاملSensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
We report on the fabrication of PbS-CdS (core-shell) quantum dot (QD)-sensitized solar cells by direct adsorption of core-shell QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid ligand exchange. PbS-CdS QD-sensitized solar cells show 4 times higher efficiency with respect to solar cells sensitized with PbS QDs. The significantly enhanced mean electron lifetime and electron diffusion l...
متن کامل